找回密码
 立即注册

QQ登录

只需一步,快速开始

工控课堂 首页 工控文库 上位机编程 查看内容

图论理论在编程逻辑和算法上的应用

2022-4-6 21:45| 发布者: gkket| 查看: 1765| 评论: 0

摘要: 图论图论图论是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有 ...

图论

图论

图论是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

树是一种数据结构,它是由n(n≥1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

其中每个元素称为结点(node),每个节点有零个或多个子节点;没有父节点的节点称为根节点;每一个非根节点有且只有一个父节点;除了根节点外,每个子节点可以分为多个不相交的子树。

如图是一棵树:

一棵树中至少有1个结点,即根结点。

一个结点的子树个数,称为这个结点的度(如结点1的度为3,结点3的度为0)。

度为0的结点称为叶结点(leaf)(如结点3、5、6、8、9)。

树中各结点的度的最大值称为这棵树的度(此树的度为3)。

上端结点为下端结点的父结点,称同一个父结点的多个子结点为兄弟结点(如结点1是结点2、3、4的父结点,结点 2、3、4是结点1的子结点,它们又是兄弟结点)。

遍历

树结构解决问题时,按照某种次序获得树中全部结点的信息,这种操作叫作树的遍历。

先序(根)遍历

先访问根结点,再从左到右按照先序思想遍历各棵子树(如,上图先序遍历的结果为125634789)。

后序(根)遍历

先从左到右遍历各棵子树,再访问根结点(如,上图后序遍历的结果为562389741)。

层次遍历

按层次从小到大逐个访问,同一层次按照从左到右的次序(如,上图层次遍历的结果为123456789)。

叶结点遍历

即从左到右遍历所有叶节点(如,上图叶节点遍历的结果为56389)。

二叉树

二叉树是一种特殊的树型结构,它是度数为2的树,即二叉树的每个结点最多有两个子结点。

每个结点的子结点分别称为左儿子、右儿子。

五种基本形态

性质

性质一

二叉树的第i层最多有2i-1个结点(i>=1)(可用二进制性质解释。)。

性质二

深度为k的二叉树至多有2k–1个结点(k>=1)。

性质三

任意一棵二叉树,如果其叶结点数为n0,度为2的结点数为n2,则一定满足:n0=n2+1。

性质四

有n个结点的完全二叉树的深度为floor(log2n)+1。

性质五

一棵n个结点的完全二叉树,对任一个结点(编号为i),有:如果i=1,则结点i为根,无父结点;如果i>1,则其父结点编号为floor(i/2),如果i为父节点编号,那么2i是左孩子,2i+1是右孩子。

图A-满二叉树

图B-完全二叉树

编号示意图

遍历

二叉树的遍历是指按一定的规律和次序访问树中的各个结点。

遍历一般按照从左到右的顺序,共有3种遍历方法,先(根)序遍历,中(根)序遍历,后(根)序遍历。

先序遍历

若二叉树为空,则空操作,否则:

访问根结点、先序遍历左子树、先序遍历右子树

void preorder(tree bt)//先序递归算法
{
if(bt)
cout << bt->data;
preorder(bt->lchild);
preorder(bt->rchild);
}
}

先序遍历此图结果为:124753689

中序遍历

若二叉树为空,则空操作,否则:

中序遍历左子树、访问根结点、中序遍历右子树

void inorder(tree bt)//中序遍历递归算法
{
if(bt)
inorder(bt->lchild);
cout << bt->data;
inorder(bt->rchild);
}
}

中序遍历上图结果为:742513869

后序遍历

若二叉树为空,则空操作,否则:

后序遍历左子树、后序遍历右子树、访问根结点

void postorder(tree bt)//后序递归算法
{
if(bt)
postorder(bt->lchild);
postorder(bt->rchild);
cout << bt->data;
}
}

后序遍历上图结果为:745289631

已知先序序列和中序序列可唯一确定一棵二叉树;

已知中序序列和后序序列可唯一确定一棵二叉树;

已知先序序列和后序序列不可唯一确定一棵二叉树;

二叉树操作(建树、删除、输出)

普通树转二叉树

由于二叉树是有序的,而且操作和应用更广泛,所以在实际使用时,我们经常把普通树转换成二叉树进行操作。

通用法则:“左孩子,右兄弟”

建树

删除树

插入一个结点到排序二叉树中

在排序二叉树中查找一个数

相关题目

扩展二叉树

由于先序、中序和后序序列中的任一个都不能唯一确定一棵二叉树,所以对二叉树做如下处理,将二叉树的空结点用“.”补齐,称为原二叉树的扩展二叉树,扩展二叉树的先序和后序序列能唯一确定其二叉树。

现给出扩展二叉树的先序序列,要求输出其中序和后序序列。

输入样例:

ABD..EF..G..C..

输出样例:

DBFEGAC

DFGEBCA

二叉树的建立和输出

以二叉链表作存储结构,建立一棵二叉树,并输出该二叉树的先序、中序、后序遍历序列、高度和结点总数。

输入样例:

12##3##

//#为空

输出样例:

123

//先序排列

213

//中序排列

231

//后序排列

2

//高度

3

//结点总数

因为本蒟蒻不太会用指针,所以自己写了一个不带指针的,代码很丑,见谅QwQ

#include<iostream>
#
关注公众号,加入500人微信群,下载100G免费资料!

最新评论

热门文章
关闭

站长推荐上一条 /1 下一条

QQ|手机版|免责声明|本站介绍|工控课堂 ( 沪ICP备20008691号-1 )

GMT+8, 2025-12-22 17:26 , Processed in 0.126528 second(s), 23 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.